Synergy between trehalose and Hsp104 for thermotolerance in Saccharomyces cerevisiae.

نویسندگان

  • B Elliott
  • R S Haltiwanger
  • B Futcher
چکیده

We isolated a mutant strain unable to acquire heat shock resistance in stationary phase. Two mutations contributed to this phenotype. One mutation was at the TPS2 locus, which encodes trehalose-6-phosphate phosphatase. The mutant fails to make trehalose and accumulates trehalose-6-phosphate. The other mutation was at the HSP104 locus. Gene disruptions showed that tps2 and hsp104 null mutants each produced moderate heat shock sensitivity in stationary phase cells. The two mutations were synergistic and the double mutant had little or no stationary phase-induced heat shock resistance. The same effect was seen in the tps1 (trehalose-6-phosphate synthase) hsp104 double mutant, suggesting that the extreme heat shock sensitivity was due mainly to a lack of trehalose rather than to the presence of trehalose-6-phosphate. However, accumulation of trehalose-6-phosphate did cause some phenotypes in the tps2 mutant, such as temperature sensitivity for growth. Finally, we isolated a high copy number suppressor of the temperature sensitivity of tps2, which we call PMU1, which reduced the levels of trehalose-6-phosphate in tps2 mutants. The encoded protein has a region homologous to the active site of phosphomutases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Schizosaccharomyces pombe Hsp104 Disaggregase Is Unable to Propagate the [PSI+] Prion

The molecular chaperone Hsp104 is a crucial factor in the acquisition of thermotolerance in yeast. Under stress conditions, the disaggregase activity of Hsp104 facilitates the reactivation of misfolded proteins. Hsp104 is also involved in the propagation of fungal prions. For instance, the well-characterized [PSI(+)] prion of Saccharomyces cerevisiae does not propagate in Deltahsp104 cells or i...

متن کامل

The 70-kilodalton heat-shock proteins of the SSA subfamily negatively modulate heat-shock-induced accumulation of trehalose and promote recovery from heat stress in the yeast, Saccharomyces cerevisiae.

In the yeast, Saccharomyces cerevisiae, the disaccharide trehalose is a stress-related metabolite that accumulates upon exposure of cells to heat shock or a variety of non-heat inducers of the stress response. Here, we describe the influence of mutations in individual heat-shock-protein genes on trehalose metabolism. A strain mutated in three proteins of the SSA subfamily of 70-kDa heat-shock p...

متن کامل

Ssd1 is required for thermotolerance and Hsp104-mediated protein disaggregation in Saccharomyces cerevisiae.

In the budding yeast Saccharomyces cerevisiae, the Hsp104-mediated disaggregation of protein aggregates is essential for thermotolerance and to facilitate the maintenance of prions. In humans, protein aggregation is associated with neuronal death and dysfunction in many neurodegenerative diseases. Mechanisms of aggregation surveillance that regulate protein disaggregation are likely to play a m...

متن کامل

Concomitant appearance of intrinsic thermotolerance and storage of trehalose in Saccharomyces cerevisiae during early respiratory phase of batch-culture is CIF1-dependent.

Strains of Saccharomyces cerevisiae that exhibit varied capacities for accumulation of trehalose were tested for intrinsic thermotolerance. Yeast that accumulated trehalose rapidly in early respiratory phase showed equally rapid attainment of thermotolerance, whereas a strain unable to accumulate trehalose at this stage of culture showed markedly delayed appearance of thermotolerance. These res...

متن کامل

Acquisition of thermotolerance in Saccharomyces cerevisiae without heat shock protein hsp 104 and in the absence of protein synthesis.

Acquisition of thermotolerance in response to a preconditioning heat treatment at 40 degrees C was studied in mutants of the yeast Saccharomyces cerevisiae lacking a specific heat shock protein or the ability to synthesize proteins at 40 degrees C. A mutant carrying a deletion of heat shock protein hsp 104 and the corresponding wildtype strain were both highly sensitive to heat stress at 50.4 d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 144 3  شماره 

صفحات  -

تاریخ انتشار 1996